

Présentation du projet Cléopatre Colloque RNTL – 4 et 5 octobre 2004

Atelier de développement et de vérification d'une bibliothèque de

Composants Logiciels sur Etagères Ouverts

Pour les Applications Temps-Réel Embarquées

Projet exploratoire 2002-2005

Présentation du projet (1)

Préocupations des industriels

- Réduction du cycle de développement et du coût de maintenance
- Désir du client de maitriser le processus d'intégration
- Logiciels propriétaires fermés et rigides
- Diversité des applications (du critique au grand public), contraintes de sûreté de fonctionnement,...

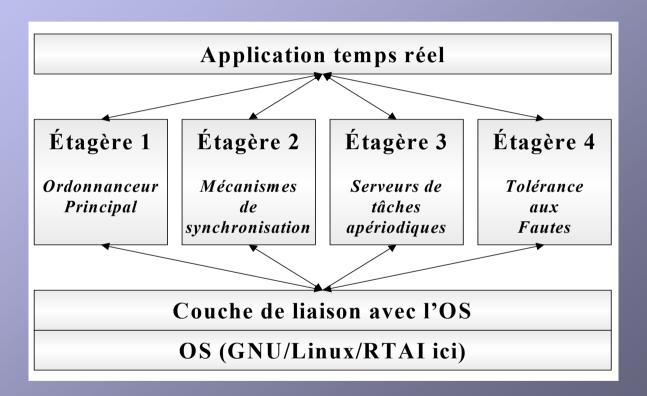
Présentation du projet (2)

Objectifs du projet

- Fournir un RTOS libre, ouvert, entièrement configurable possédant une gamme élargie de fonctionalités
- Fournir une librairie de fonctions applicatives (vision et robotique)

Verrous à lever

- Fournir des modules <u>inter-changeables</u> et <u>inter-opérables</u> pour construire à la carte un RTOS, compatible avec l' OS généraliste Linux
- Mettre à disposition des utilitaires de niveau applicatif



Présentation du projet (3)

Illustration:

Composants génériques, interropérables et interchangeables par classe

Présentation du projet (4)

Maryline Silly-Chetto

http://www.sciences.univ-nantes.fr/irin/

DE NANTES ATLANTIQUE

Pierre Blazevic

http://www.robot.uvsq.fr/

Patrick Bonnin

http://www.cleopatre-project.org

Christophe Plot

François Russoto

http://132.168.108.9/CEREM/FR/Pages/R obotique.htm

Dominique Villenave

Présentation du projet (5)

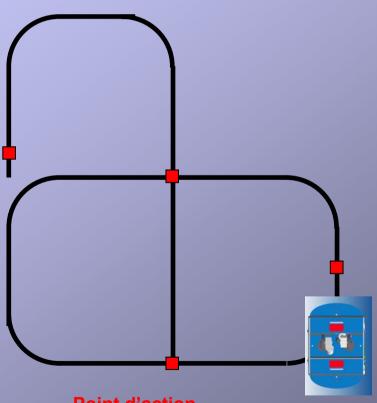
Coûts

Partenaire	Rôle dans le projet	Subvention accordée
LINA	Coordination R&D composants RTOS	236 827
LRV	R&D composants robotique	145 867
L2TI	R&D composants vision temps-réel	165 400
CEA - LIST	Spécifications de développement	223 044
Robosoft SA	Diffusion	118 500
CRTTI-IUT Nantes	Démonstration	102 619

Résultats obtenus à ce jour (1)

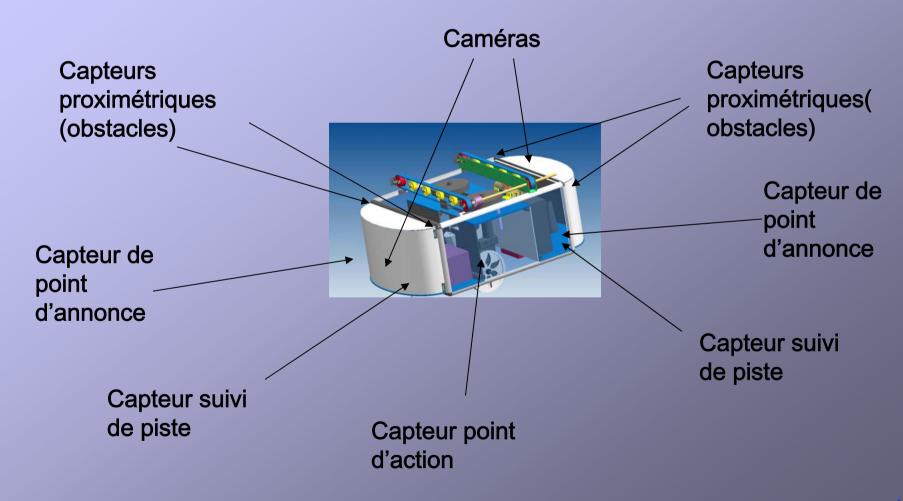
- RTOS configurable avec guide de l'utilisateur et guide du programmeur
- Une bibliothèque d'algorithmes de vision
- Une bibliothèque d'outils mathématiques dédiée robotique
- Un démonstrateur : AGV commandé à distance

Résultats obtenus à ce jour (2)


- Intégration et validation de stratégies novatrices dans un RTOS libre
 - tolérance aux fautes (redondance dynamique),
 - > POA,
 - ordonnancement à priorité dynamique,
 - > serveurs de tâches apériodiques,...
- Fourniture d'un logiciel pour le temps-réel embarqué:
 - libre et ouvert (licence LGPL)
 - paramétrable

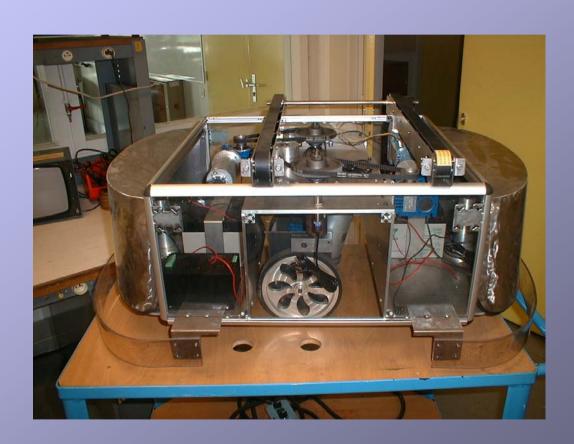
Démonstrateur (1)

AGV commandé à distance

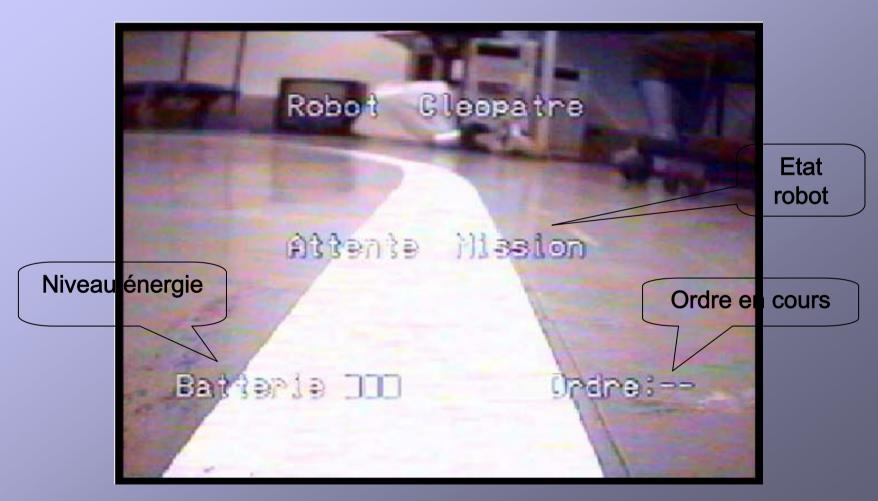


Point d'action

Démonstrateur (2)



Démonstrateur (3)



Démonstrateur (4)

Retombées et perspectives d'exploitation (1)

Retombée

Ouverture du logiciel libre vers le temps-réel "dur"

Perspectives

- Pratique industrielle de technologies temps-réel non-classiques
- Confiance augmentée envers le logiciel libre et en particulier Linux temps-réel

Dissémination

- Site de téléchargement
- Organisation de journées techniques (le 04/07/02 et le 30/09/04)

Retombées et perspectives d'exploitation (2)

Prérequis à l'industrialisation

Méthodologie de choix des composants logiciels selon les spécificités de l'application

- Mise en place d'un support technique permanent
 - pour pérenniser la diffusion
 - et l'utilisation du produit Cléopatre

Bilan "RNTL" (1)

Mise en route et suivi

- 1 réunion pleinière par trimestre
- Accord de consortium élaboré en 2003
- Fonctionnement par pool: CEA-L2TI-LRV et LINA-CRTTI-Robosoft
- Echanges par courrier électronique
- Synergie:
 - Chercheurs de différents domaines
 - Chercheurs et développeurs
 - Développeurs et utilisateurs

Bilan "RNTL" (2)

Apports du RNTL au projet

- Intérêt de la communauté industrielle de par le label RNTL
- Possibilité d'avoir une activité de R&D (un développeur pt 3 ans)
- Synergie scientifique par la participation aux congrés
- Liens tissés à l'international (Japon, Brésil, Espagne, Tchéquie)
- Et surtout la possibilité d'atteindre le stade de l'intégration,...
- Transfert technologique et vitrine des travaux de R&D grace au démonstrateur

Bilan "RNTL" (3)

Retombées académiques

- Préparation de 3 doctorats
 - 2 au LINA (2002 \rightarrow 2005 et 2003 \rightarrow 2006)
 - 1 au L2TI (2002 → 2005)
- Stages de fin d'études ingénieurs (Polytech'Nantes)
- Projets de maîtrise d'Informatique (Institut Galilée)
- Stagiaire PhD Université technologique de Prague (LINA)

Bilan "RNTL" (4)

Problèmes rencontrés

Scientifiquement:

- Absence de doctorants chez des partenaires en début de projet
 - → déphasage des travaux de R&D
 - Fin de projet: 4 juin 2005 (au lieu du 4 déc. 2004)

Financièrement:

Aucun problème

Administrativement:

aucun problème

Conclusion et propositions pour la suite (1)

Thèmes à développer

- Extension de l'approche Cléopatre :
 - applications "firm real-time" avec contraintes de qualité de service, économie d'énergie, ...
 - architectures multi-processeur et multi-node
 - généricité des composants Cléopatre
- Communication T.R., Tolérance aux pannes, reconfiguration dynamique

Secteurs demandeurs: radio logicielle, multimédia, production automatisée

Conclusion et propositions pour la suite (2)

Nouveaux verrous à lever

- * Contrainte mémoire de l'embarqué
 - → composants logiciels de taille réduite
- Convaincre les utilisateurs avec :
 - interfaces H-M conviviales
 - Automatisation du choix des composants logiciels

Annexe

Références de quelques publications (année 2004)

M. Silly-Chetto, P. Bonnin, P. Blazevic, F. Russotto, C.Plot and V. Dupourqué: *CLEOPATRE: Free open source components for real-time control of robotic applications*, 5th IFAC Symposium on Autonomous vehicles, 5-7 july 2004, Lisbonne.

T.Garcia and M.Silly-Chetto: *Enhancing Real-Time Linux with specific open source components*, Real-Time Linux Workshop, 4-6 Nov. 2004, Singapour.

A.Marchand and M.Silly-Chetto *Dynamic scheduling of soft aperiodic and periodic tasks with skips*, IEEE Real-Time Systems symposium, Dec. 2004, Lisbonne.